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a b s t r a c t 

Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain func- 

tion based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship 

between various brain regions usually measured by correlation analysis. The elements of the correlation 

matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious 

correlations due to noises and artifacts. They can not be concluded as real strong correlations between 

brain regions and their existence could make a misconception and leads to fake results. It is crucial to 

make a conclusion based on reliable and informative correlations. In order to eliminate weak correla- 

tions, thresholding is a common method. In this routine, by adjusting a threshold the values below the 

threshold turn to zero and the rest remains. In this paper, in addition to thresholding, two other meth- 

ods including spectral sparsification based on Effective Resistance (ER) and autoencoders are investigated 

for sparsing the correlation matrices. Autoencoders are based on deep learning neural networks and ER 

considers the network as a resistive circuit. The fMRI data of the study correspond to Alzheimer’s pa- 

tients and control subjects. Graph global measures are calculated and a non-parametric permutation test 

is reported. Results show that the autoencoder and spectral sparsification achieved more distinctive brain 

graphs between healthy and AD subjects. Also, more graph global features were significantly different 

from these two methods due to better elimination of weak correlations and preserve more informa- 

tive ones. Regardless of the sparsification method features including average strength, clustering, local 

efficiency, modularity, and transitivity are significantly different (P-value = 0.05). On the other hand, the 

measures radius, diameter, and eccentricity showed no significant differences in none of the methods. In 

addition, according to three different methods, the brain regions show fragile and solid FCs are deter- 

mined. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a dynamic illness that causes brain 

ells to degenerate and perish. An individual with AD will cre- 

te extreme memory debilitation and lose the capacity to com- 

lete regular assignments [1] . Although AD drugs may briefly im- 

rove manifestations or moderate the disease progression there is 

o specific treatment that cures AD or decreases the sickness pro- 

edure in the brain [2] . The prevalence of AD is very challenging. 

ince 20 0 0, dying from AD have risen by 89 percent while those 

rom coronary illness have diminished [3] . According to the mor- 
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ality rate (sixth-leading cause of death in the US [4] ) and severe- 

ess of the AD, early and precise diagnosis of AD is very crucial. 

Diagnosis of AD from structural imaging such as Magnetic Res- 

nance Imaging (MRI) is common in literature. In a recent study 

5] by use of Shearlet Transform (ST) feature extraction technique 

nd K-Nearest Neighbor (KNN) classifier, the accuracy of 98.48% 

s provided. Another routine to investigate AD is Diffusion Tensor 

maging (DTI). In [6] by use of DTI data, the different stages of 

D were classified by employing a deep learning algorithm called 

onvolutional Neural Networks (CNN), and the accuracy of 92.6% 

s achieved for four classes. Using deep learning improves the re- 

ults effectively. Duc et al. [7] proposed functional 3-dimensional 

3-D) independent component spatial maps for use as features and 

eep CNN as a classifier to distinguish AD subjects from healthy 

nes. Deep learning methods also have been used to analyze other 

iomedical signals such as Electrocardiograms (ECG) [ 8 , 9 ]. The ac- 
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Table 1 

Demographic information of the data. 

Group No. (Male/Female) Age CDR score MMSE score 

AD (15/13) 75.9 ± 4.8 1.03 ±0.54 21.58 ±3.16 

Healthy (14/14) 74.8 ± 5.7 0.16 ±0.05 28.94 ±2.51 
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uracy in both mentioned studies reaches more than 98%. It is 

orthwhile mentioning that the use of deep learning is not lim- 

ted to medical applications and is very prevalent in other topics 

uch as [10] . 

A very reliable and prevalent method to investigate AD is the 

unctional MRI (fMRI) technique. In the fMRI session, brain ac- 

ivity measures based on changes related to blood flow [11] . At 

rain regions where neurons are activated, the bloodstream to that 

rea likewise increases. In ordinary fMRI, brain activity is esti- 

ated based on low-frequency signals called Blood-Oxygen-Level- 

ependant (BOLD) [12] . A common application is to investigate the 

ynamics of fMRI signals which is done in a recent study and the 

ccuracy of 88.52% is provided [13] . Another main application of 

MRI in brain research is to calculate and analysis of brain connec- 

ivities (anatomical, functional, effective). Based on connectivities, 

he hypothesis is that healthy brains show a pattern for connectiv- 

ties, and for other people who suffer from mental and brain dis- 

ases, their brain often shows disruption in the connectivities. This 

outine can understand the abnormality and it is useful for early 

etection of illnesses such as AD which started several years be- 

ore the clinical signs reveal [14] . Functional Connectivity (FC) re- 

ates the dependencies of different regions in the brain which are 

ot connected structurally but are functionally connected. It tends 

o be characterized as the temporal relationships between’s spa- 

ially remote neurophysiological occasions [15] . Commonly, FC is 

alculated among the fMRI time series from different ROIs or Vox- 

ls [16] . 

A brain graph theory system is a numerical portrayal of the 

enuine brain design that comprises of many nodes and connec- 

ions (edges) intervened between them. Nodes normally speak to 

rain areas, while connections speak to anatomical, functional, or 

ffective extracts [17] . According to correlation analysis, the edges 

f the graphs show the value of the correlation which is between 

1 to 1. The sign of the correlation shows the direction and the 

alue shows the strength of the connectivity between two different 

rain regions. It should be noted that small values could happen 

lso because of recording device or physiological and experimental 

oise and artifacts [18] . It is common to use a threshold in order

o sparse the graphs and remains the higher correlations which 

mplying strong FC’s, in this manner making it computationally 

ncreasingly tractable [ 19 , 20 ], In many studies [21-26] the analy- 

is are reported with several thresholds. Although this is a com- 

on approach, it makes it difficult to compare the results of dif- 

erent studies. Another drawback is that there is no specific physi- 

logical meaning for thresholding. Despite all the issues, for brain 

raph sparsification, thresholding is a popular procedure [27] . Also, 

nother approach for thresholding is the fixed density that jams 

he objective density of links [28] . Bordier et al. [20] proposed a 

ethod established in statistical material science, to distinguish a 

parsification threshold that augments data on the graph modular 

tructure in order to overcome the problem of calculating the opti- 

al threshold. Luo et al. [29] were employed fMRI data of Chinese 

eople to investigate brain functional connectivity modification to 

xplore AD. For sparsification step thresholding was used and the 

alue is characterized as the proportion of real links number to 

he most extreme potential links. Also, ar recent study [30] , inves- 

igates the effect of weighted or binary graphs in fMRI of AD pa- 

ients. Another recent study [31] proposed a computationally pro- 

uctive technique to find the optimal threshold based on the pro- 

ection of the data to its highest covariance and variance state. 

Sparsification is a fundamental step in neuroimaging data con- 

ectivity analysis. Although the most frequent method for spar- 

ification is thresholding, has its own drawbacks (as mentioned 

bove) and there is no robust and gold standard algorithm to select 

he optimal threshold. Accordingly, in this paper, to overcome the 

imitation of thresholding two other methods are presented. Most 
2 
f the studies are employed deep learning algorithms for classifi- 

ation but in this research, a deep learning method is employed to 

parse the connectivity matrices called sparse autoencoders. Also, 

o perform a comprehensive investigation, another approach for 

raph sparsification is proposed called Effective Resistance (ER). 

The paper is organized as follows: In the Material and Methods, 

he database and preprocessing are explained. Secondly, the graph 

heory and features are presented and then the ER method and 

utoencoders are elaborated in this section. Next, the outcomes are 

eported in the Result section. Then, the results are interpreted in 

he Discussion part and finally, the conclusion section is presented. 

. Material and methods 

Analyzing the effect of different methods for graph sparsifi- 

ation is the main idea of this research, accordingly in this sec- 

ion, the fMRI data and the preprocessing method are presented. 

lso, the sparsification methods and brain graph generating are ex- 

lained. 

.1. Data and preprocessing 

One of the publicly available datasets of AD is the Alzheimer’s 

isease Neuroimaging Initiative (ADNI) which started collecting 

ata since 2004 [32] . The data of this study is from ADNI2 which

tarted in 2011 and last for 5 years [33] . The data for this re-

earch consists of 2 groups (AD and healthy) and each of them 

as 28 subjects. All the scans are taken by a 3 tesla Philips de- 

ice and based on the ADNI protocol [34] . The parameters are: 

R/TE 30 0 0/30 msec, flip angle = 80, 3.3125 mm slice thickness, 

8 slices, and the functional volumes were 140. In Table 1 , the 

nformation of the data is shown. The CDR and MMSE scores in 

able 1 are related to Clinical Dementia Rating and Mini-Mental 

tate Exam respectively. They are used for AD and dementia clini- 

al testing. 

The Data Processing Assistant for rs-fMRI (DPARSF) toolbox is 

sed for preprocessing [35] . The functions of this toolbox were 

ased on SPM and REST toolboxes. The slice timing correction was 

erformed utilizing the last cut as the reference. According to lon- 

itude fMRI recording, correcting head motion is necessary. Thus, 

igid body registration is performed. To be able to compare among 

ifferent subjects, scans are standardized to a reference brain be- 

ause the anatomy of the brain is somewhat unique in the indi- 

iduals. In this way, the subjects were standardized to Montreal 

eurological Institute (MNI) atlas. By utilizing a Gaussian kernel 

ith FWHM = 4 mm, the fMRI data was smoothed. As to hold the 

ow-recurrence motions, the data were filtered by a band-pass fil- 

er (0.01–0.08 Hz) and detrended. The Automated Anatomical La- 

eling (AAL) atlas was utilized to segment the data by standard 

OIs [36] . The AAL parcellates the brain into 116 specific locales. 

.2. Graph theory and features 

Complex networks such as brain networks can be modeled with 

he aid of graph theory. Voxels or ROIs of the brain correspond 

o nodes and the connectivity between regions refers to links be- 

ween two ROIs or voxels. In this research, an ROI based (116 ROI 

ccording to the AAL atlas) approach is used. The signal of each 

OI was gained by averaging of all voxels inside that ROI. Edges 
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Table 2 

Graph measures and formula. 

Graph Measure Formula 

Degree –

Eccentricity Ecc = max { d G ( x,y )} 

Strength Str(υ) = 

∑ 

υ∈ V 
E

Radius R = min { ECC } 

Diameter D = max { ECC } 

Characteristic Path Length L = 

∑ 

x,y ∈ V (G ) d G (x,y ) 

n (n −1) 

Global Efficiency E glob (G ) = 

E(G ) 
E( G Ideal ) 

Local Efficiency E loc (G ) = 

1 
n 

∑ 

x ∈ G 
E( G x ) 

Clustering C = 

Number of closed triplets 
number of all triplets 

Modularity M = 

1 
l 

∑ 

x,y 
[ A x,y − k x k y 

l 
] δx,y 

Transitivity T = 

3 ∗number of triangles 
number of connected triples of nodes 

Small-Worldness σ = 

C 
/ C r 

L 
/ L r 
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Fig. 1. A schematic of an autoencoder. The encoder and decoder are illustrated sep- 

arately [37] . 
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r

f the brain graph were computed using the Pearson correlation 

nalysis and finally, the weighted undirected brain graphs are con- 

tructed. Graph measures can be computed over the FC matrices 

hat show the integration and segregation of the brain and based 

n the features can conclude the effect of different diseases on 

he FCs in the brain. The features and their formulas are listed in 

able 2 . 

In Table 2 , the graph is shown by G = ( V, E )where G corresponds

o a graph in which E refers to links and V related to the nodes. The

istance between the x and y nodes was shown by d G ( x,y ). It also

 refers to the number of vertices. A x,y refers to the connectivity 

atrix, and l related to the number of links. If the two hubs are

rom one network, the δx,y is 0 and finally the C r and L r relate to

n identical random graph. The average efficiency of a graph is 

(G ) = 

1 
n (n −1) 

∑ 

x � = y ∈ G 
1 

p(x,y ) 
where p ( x, y )is the shortest path length 

etween x and y . Furthermore, the G 

Ideal relates to a diagram of ver-

ices wherein every single imaginable edge is available. 

.3. Autoencoders 

Autoencoders are commonly based neural networks which of- 

en used to code the input data efficiently. In the first part which 

s called encoder, the network, codes the input data (outputs of 

he first hidden layer are the code), and in the decoder part, the 

etwork extracts the input again from the code [30] . Consider the 

ollowing equations: 

 = f (x ) encoder 

 = g(h ) d ecod er 

( f (x )) = ̂

 x 

he equation h = f ( x ) can rewrite as h = σ ( Wx + b )where W is the

eight matrix, σ an activation function, and b represents the bias 

ector. 

During the training phase the reconstruction error which eval- 

ates the differences between input data and the output is mini- 

ized: 

 (x, g( f (x ))) 

here L is a cost function that trying to minimize the difference 

etween g ( f ( x ))) and x through functions such as mean squared er-

or. A schematic of an autoencoder is depicted in Fig. 1 . X is the

nput layer. Z is the result of the encoder section that codes the 

nput (coding layer). X’ is the output of the decoder part and tries 

o represent the input. 
3 
One of the main applications of autoencoders is to sparse the 

nput data [38] . In this case, a term such �( h ) is added to the cost

unction.: 

 (x, g( f (x ))) + �(h ) 

he sparsity term forces the output of the encoder to be more 

parse in comparison to input data. For optimization, Kullback- 

eibler (KL) divergence is used [39] . According to it: 

̂ j = 

1 

m 

m ∑ 

i =1 

[
h j ( x i ) 

]
he above equation computes the activation over the hidden layer j 

or the input x i and averages it for m inputs. In fact, by obliging the

euron’s activation over a gathering of data, the neurons urging to 

re only for several inputs and it means that although the network 

as a large structure most of the neurons are inactive. In this cri- 

erion whatever the ̂ ρ is close to zero, it is better, so according to 

he method the constraint has been compelled to ̂ ρ = ρwhere ρ is 

he variable for sparsity. As the KL-divergence calculates probabil- 

ty distributions variation, ρ can be explained as Bernoulli random 

ariable distribution and it can be written as follows: 

s ∑ 

j=1 

[
ρ log 

ρ̂ ρ j 

+ (1 − ρ) log 
1 − ρ

1 − ̂ ρ j 

]

here s corresponds to the hidden layer neurons, j implying to 

idden units and β is a parameter that controls the sparsity. In the 

bove optimization 

̂ ρ is going to be penalized if it differs from ρ
emarkably. This function is zero if ̂ ρ = ρ and is going to increase 

ased on the differences between 

̂ ρ and ρ . 

If there is more than one hidden layer (deep network), the net- 

ork is going to be stacked autoencoder. In the stacked networks 

he training phase is a bit different from ordinary Multi-Layer Per- 

eptron (MLP). Firstly the network has been trained with one hid- 

en layer after that the second one is going to be trained and the 

rst hidden layer takes the input layer role and finally the hidden 

ayers merged and make the stacked autoencoder. In this paper, a 

tacked autoencoder has been used with two hidden layers [40] . 

After trying different specifications, the characteristics of the 

tacked autoencoder in this research were set to four layers includ- 

ng two layers for the encoder and two other layers for the decoder 

art. The parameters of the autoencoder are exhibited in Table 3 . 

0% of the data were used for training, 10% for validation, and the 

est for testing randomly. 
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Table 3 

The autoencoder specifications and parameters. 

Number of layers 4 

Number of neurons 150 and 116 

Maximum epoch 200 

Initial weights Randomly selected 

Transfer function Logistic sigmoid function 

Regularizer terms 0.002 and 0.004 

Sparsity term 4 
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Fig. 2. The overview of the study. 
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.4. Spectral sparsifier and effective resistance 

The graph G can be presented by the following relation: 

 = (V, E, w ) 

here, V, E, w are the vertices, links, and weights, respectively. The 

raph was assumed as a resistor network (an electrical circuit) so 

hat, every link e ∈ E between ( i, j )is related to a resistor, r i,j = 1/ w

hm, and the energy of graph G is obtained as follows: 

 G (x ) = 

∑ 

i, j∈ E 
( x i − x j ) 

2 
. 

he ER of a link is characterized as the potential distinction that 

ust be applied to i and j to drive one unit of current through 

he graph (potentials x : V → R ). Then. ER R G ( e ) is measured as fol-

ows: 

 G (e ) = x i, j 
T 	 G x i, j 

here 	 G is the Moore-Penrose pseudo-inverse of the Laplacian 

atrix, that is equal to −1 at the node j , and is equal to 1 at the

ode i , and also is equal to 0 for the rest. Also, x i is the magnitude

f x for vertex i . 

Spielman and Teng [41] have introduced the spectral similar- 

ty that has an important role in solving Laplacian systems. As we 

now the Laplacian form of G is: 

 

T L G x = 

∑ 

i, j∈ E 
w i, j ( x i − x j ) 

2 

 (1 ± ε)-spectral sparsifier H approximates G if for every subset 

 ⊂V , the sum of weights for links leaving S is protected. In other

ords, H and G are spectrally similar if: 

1 − ε) x T L H x ≤ x T L G x ≤ (1 + ε) x T L H x 

ccording to Loewner ordering on matrices: 

(1 − ε) L H ≤ L G ≤ (1 + ε) L H , x T Ax ≥ 0 if A is positive semi-

efinite for all x ∈ R 

n Networks that are spectrally similar offer nu- 

erous arithmetical properties. The ER between all sets of vertices 

s comparable in spectrally similar networks. Spielman and Srivas- 

ava [42] have proved that every graph has a spectral sparsifier 

hat can be obtained by the ER method through a random pro- 

ess. They have prepared the samples from edges of graph G pro- 

ortional to their ER [43] . In the present paper, in addition to the

utoencoder method, the ER procedure was used based on [42] the 

lgorithm to provide a sparse representation for correlation matri- 

es. 

Accordingly, the flowchart of the research is shown in Fig. 2 . 

. Results 

The fMRI data were preprocessed and the time-series were ex- 

racted based on the AAL atlas. In the next step, the Pearson cor- 

elation coefficients of the data were calculated to obtain the FC 

mong the brain ROIs and to generate the weighted undirected 

onnectivity graphs. Then, the matrices were sparsed by threshold- 

ng, autoencoders, and ER methods that were fully explained in the 

aterial and Method section. It is worthwhile mentioning that all 
4 
he processing was done in Matlab2018a and the hardware speci- 

cations are as follows: CPU: Intel Core i7 - 8550 U, RAM: 16 GB 

DR 4. Fig. 3 shows the connectivity matrix of a subject. 

As can be seen in Fig. 3 , all the elements of the matrix have

 value that some of them are weak and may be spurious because 

f experimental noise. The weak correlations should be removed to 

btain a matrix with strong FCs. For this purpose, thresholding can 

e used. As shown in Fig. 4 , the above matrix has been thresh-

lded by 0.5. It is worthwhile to mention that, as the goal was 

nalyzing the functional connectivity and the direction of the cor- 

elations was not important in this analysis, so the absolute value 

f the elements was considered before thresholding. 

The matrix shown in Fig. 4 has more sparsity than that in Fig. 3 .

his sparsity makes further computations very fast and also the 

esearcher is sure about the results because they are based on the 

trong FCs and the weaker links have no role in the results but 

nding an optimal threshold is a problem for this method. Also, 

erforming the same threshold is not very appropriate in different 

ubjects because as the people got older, the FCs become weaker 

nd the brain loses its segregation [44] . 

In addition to thresholding, a stacked spars-autoencoder was 

sed to sparse the input matrix (correlation matrix). In the training 

hase, the autoencoder learns to make a more sparse representa- 

ion of the input data. Seventy percent of the data was selected 
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Fig. 3. A 116 ×116 matrix. The elements are from −1 (Dark Blue) to 1 (Dark red) 

showing the correlation (FC) between the brain ROIs. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4. The thresholded matrix by 0.5. The strong FCs have remained. 
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andomly and was used for training. As illustrated in Fig. 5 , a ma-

rix has been sparsed by a threshold of 0.5 and the autoencoder. 

he difference between the results is also shown in Fig.5 . 

The primary matrix had 13,456 elements (116 ×116). After spar- 

ification, its elements were reduced to 1306 by the thresholding 

ethod and 1636 by an autoencoder. Also, the differences between 

he two methods were 378 elements. Moreover, the same com- 

arison was done between the thresholding, spectral sparsification, 

nd ER algorithm as shown in Fig. 6 . 

As shown in Figs. 5 and 6 , the results of the three sparsification

ethods are different. The graph measures were computed from 

he results of sparsification methods for AD and healthy groups 
5 
o compare them. Besides, the non-parametric permutation test 

as done to determine which measures are significantly different 

nd are capable to discriminate between AD and healthy groups. 

able 4 shows the results of the statistical analysis. 

Regardless of the sparsification method, there was a significant 

ifference in the features average strength, clustering, local effi- 

iency, modularity, and transitivity (P-value = 0.05). It can be con- 

luded that these features are highly influenced by the AD; there- 

ore they are more appropriate features for FC analysis in the AD. 

here were no significant differences in the features such as radius, 

iameter, and eccentricity (that were calculated based on radius 

nd diameter). 

The two features including average degree and global efficiency 

howed no significant differences using the thresholding method 

ut they were significantly different using the other methods 

howing that the autoencoder and spectral sparsification methods 

re more capable to distinguish between AD and healthy subjects 

n comparison with simple thresholding. 

Comparing between the autoencoder and spectral sparsifica- 

ion method revealed that, the Characteristic Path Length (CPL) 

nd small-worldness features showed significant differences in the 

pectral sparsification method, so this method is more reliable and 

ppropriate for sparsification in FC analysis of AD patients. 

Moreover, when the P-value was considered as 0.01, only two 

eatures including clustering and transitivity showed significant 

ifferences in the thresholding method while the average strength, 

lustering, transitivity, and modularity showed significant differ- 

nces in the autoencoder method and the average strength, global 

nd local efficiencies, clustering, and transitivity also showed sig- 

ificant differences in the spectral sparsification method confirm- 

ng the above-mentioned results again. 

For a better visual display, Fig. 7 shows the binary brain graphs 

enerated by different sparsification methods. 

As depicted in Fig. 6 , the graphs generated by spectral sparsi- 

cation and autoencoder methods are more capable to distinguish 

etween a patient with AD and a healthy subject in comparison 

ith the thresholding method. 

After sparsification, several ROIs had the most changes (lost 

heir connections) and also several ROIs were intact approximately 

nd had kept their connections. The numbers of these ROIs are 

isted in Table 4 based on the AAL atlas and each sparsification 

ethod. It is worthwhile to mention that the sparsed ROIs listed 

n Table 5 have lost more than 90% of their connections and the 

ntact ROIs have kept more than 90% of their connections after the 

parsification process. 

According to Table 5 , the ROIs that were common in all three 

ethods were highlighted. It can be concluded that these ROIs 

ave kept or lost their connections regardless of the sparsifica- 

ion methods. In the AD group, the ROIs 28 and 41 lost more than 

0% of their edges while, in the control group, these ROIs were 

ot sparsed like the AD group. It can be interpreted that, AD af- 

ects the functional connectivity in ROIs 28 and 41. Fig. 8 shows 

he highlighted ROIs. 

. Discussion 

The current study was designed to analyze the effect of the 

parsification method on distinguishing between AD patients and 

ealthy subjects. For this purpose, after preprocessing the fMRI 

ata and extracting the time-series, the Pearsons Correlation Co- 

fficients between different brain ROIs were calculated and the 

eighted undirected connectivity graphs were generated. Next, the 

onnectivity matrices were sparsed using three different methods 

ncluding thresholding (0.5), autoencoder, and spectral sparsifica- 

ion. It is worthwhile to mention that the sparsification step is 

eeded due to the existence of weak and spurious edges related to 
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Fig. 5. A correlation matrix was sparsed by thresholding and autoencoder. Also, the results were binarized to facilitate the comparison. The ‘nz’ below each diagram cor- 

responds to non-zero elements. The ‘red’ circles in the ‘Differences’ chart indicate the elements that are available in thresholding but not in the autoencoder method and 

conversely, the ‘blue’ circles show the elements that are available in the autoencoder method but not in thresholding. 

Fig. 6. A correlation matrix was sparsed by thresholding and spectral sparsification. The Results were binarized and ‘nz’ is related to non-zero elements. The red and blue 

circles show similar information to Fig. 5 . 

Table 4 

The P-values of non-parametric permutation test between healthy and AD subjects in 

three different sparsification methods. The P-values of less than 0.05 are highlighted. 

Measures Thresholding (0.5) Autoencoder Spectral Sparsification 

Av . Degree 0.0666 0.0032 0.0167 

Av . Strength 0.0170 0.0076 0.0040 

Radius 0.3875 0.0604 0.3423 

Diameter 0.2014 0.2474 0.2009 

Eccentricity 0.4013 0.0612 0.3024 

Char. Path Length 0.1029 0.4109 0.0430 

Global Efficiency 0.0900 0.0136 0.0082 

Local Efficiency 0.0369 0.0480 0.0023 

Clustering 0.0028 0.0027 0.0007 

Transitivity 0.0024 0.0022 0.0024 

Modularity 0.0183 0.0038 0.0387 

Small-Worldness 0.1397 0.3291 0.0367 

t
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t
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p

a

i

i

s

d

he noises, and as it makes other processing steps more tractable. 

ccording to graph global measures and non-parametric permuta- 

ion test, the features including average strength, clustering, local 

fficiency, modularity, and transitivity were significantly different 

P-value = 0.05) in all three sparsification methods. It can be inter- 

reted that these features are more appropriate for FC analysis in 

D patients because they can discriminate the AD patients from 

he healthy controls regardless of the sparsification method. More- 

ver, the two features including global efficiency and average de- 
6 
ree were significantly different in spectral sparsification and au- 

oencoder methods showing that these methods are more power- 

ul tools to discriminate the AD subjects from healthy ones in com- 

arison with simple thresholding. Among these two methods, CPL 

nd small-worldness measures also showed significant differences 

n the spectral sparsification. As shown in the brain graphs, the FCs 

n spectral sparsification is more different between AD and healthy 

ubjects, which leads to making more features that are significantly 

ifferent. As a consequence, the results of the spectral sparsifica- 



H. Ahmadi, E. Fatemizadeh and A. Motie-Nasrabadi Computer Methods and Programs in Biomedicine 201 (2021) 105954 

Fig. 7. Binary graphs generated from different sparsification methods. The above figures (with red nodes) are related to the AD subject and the below figures (with blue 

nodes) correspond to the healthy subject. 

Table 5 

The ROI numbers that had the highest lost and maintained connections based on 

the AAL atlas. The highlighted numbers are common among the three methods. 

AD group Control group 

Sparsed ROIs Intact ROIs Sparsed ROIs Intact ROIs 

AE SS Thr AE SS Thr AE SS Thr AE SS Thr 

28 18 28 3 3 23 22 6 22 19 20 19 

41 22 41 43 43 43 41 9 42 47 47 47 

79 26 75 44 44 44 42 10 95 48 48 48 

108 28 79 47 47 46 72 17 107 85 85 85 

109 29 108 – – 47 107 21 109 86 86 86 

116 38 109 – – – 109 22 116 91 89 91 

– 41 116 – – – 116 42 – – 90 –

t
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s
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s

t

p

e

t

p

d
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n

c
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t

t

T

t

o

s

s

t

c

ion method were the best among the three methods followed by 

hose obtained from the autoencoder and thresholding. Besides, as 

electing the optimal threshold has always been a complex issue 

t should be mentioned that, in the autoencoder and spectral spar- 

ification methods, the procedures did not need any assumption 

r operator adjustment like selecting an optimal threshold by vi- 
7 
ualizing the results of different values. On the other hand, the 

hree features including radius, diameter, and eccentricity com- 

uted based on radius and diameter showed no significant differ- 

nces in all the methods, which can be interpreted that these fea- 

ures are not proper for analyzing the FCs in AD patients. In com- 

arison to previous studies, Bordier et al. [20] proposed a data- 

riven method. Although the algorithm overcomes the limitations 

t is based on graph modules and does not rely on total edge den- 

ity but proposed methods in this study are based on the whole 

etwork. Another valuable study [31] suggested a spatial sparsifi- 

ation. The idea is, before calculating the connectivity matrices or 

ny other processing, the voxels which demonstrate more BOLD ac- 

ivation take into account. Since the presented approach, sparsify 

he data before any further processing it is about 4 times faster. 

he autoencoder and ER approaches are reliable and more effec- 

ive tools to replace ordinary thresholding and does not affect any 

ther parts of the pipeline. Regardless of the sparsification method, 

everal ROIs were intact after the sparsification process. These ROIs 

howed powerful FC. Also, several ROIs lost most of their connec- 

ions in all the sparsification methods showing that they were not 

ritical ROIs in this analysis. 
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Fig. 8. The red circles are related to the most sparsed ROIs in the groups and the blue circles show the most intact ROIs in both groups (the brain view is dorsal axial). 
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. Conclusion 

In the present study, two methods are proposed for brain graph 

parsification to overcome the limitations of ordinary thresholding. 

ased on the results, the sparsed graph that came from the pro- 

osed method reveals more distinction between groups. It can be 

oncluded that the outcomes of the algorithms are more noiseless 

nd contains more reliable information that can exhibit more dis- 

rimination. Although the presented approaches have more poten- 

ial their computational costs are high and the implementations 

re more complex in comparison to simple thresholding. More re- 

earch on different types of deep learning algorithms and also find 

he optimal structure of neural networks are recommended. Be- 

ides, considering the physiological properties in the sparsification 

rocess will lead to interesting and more authentic results. 
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